
 

Sizes of Infinity 

I am so in favor of the actual infinite that instead of admitting that Nature abhors it, as is commonly said, I 
hold that Nature makes frequent use of it everywhere, in order to show more effectively the perfections of 
its Author. Thus I believe that there is no part of matter which is not - I do not say divisible - but actually 
divisible; and consequently the least particle ought to be considered as a world full of an infinity of 
different creatures. 

Georg Cantor (German mathematician;1845 - 1918) 
No one will expel us from the paradise that Cantor has created. 

David Hilbert (German mathematician;1862 - 1943) 

Perspective Drawing 
Our intuition suggests one Infinite; one definitive, universal, unlimited Infinite. As such Galileo’s 
warning that “we cannot speak of infinite quantities as being the one greater or less than 
another,” may seem entirely reasonable - infinity can have only one “size.” 
 
Nonetheless, it may have been suprising to see, during your exploration of the Wheel of 
Aristotle, that the number of points on a large circle is the same as the number of points on a 
small circle. We matched the points - all infinitely many of them - in a one-to-one way. 
 
The discovery of perspective drawing was an important development in the history of art. It was 
also important mathematically. As Rudy Rucker (American mathematician,computer scientist, 
science fiction author, and philosopher;1946 - ) tells us: 

Intellectually, perspective [drawing] is a breakthrough, because here, for the first time, 
the physical space we live in is being depicted as if it were an abstract, mathematical 



space. A less obvious innovation due to perspective is that here, for the first time, people 
are actually drawing pictures of infinities.1 

 
Perspective drawing is a valuable tool in our efforts to compare different sizes of infinity. The 
figures below-right shows a basic one-point perspective drawing. Notice that all lines parallel to 
the line of sight of the viewer converge to the vanishing point which represents infinity. The 
other figure shows how a point at infinity allows us to match, i.e. put in a one-to-one 
correspondence, the points on a line of length one with the points in a line of length two. The 
number of points on each is the same. 
 

 
 
 

Counting by Matching 
Without question, the most important contributions to human understanding of the infinite were 
made by Georg Cantor (German mathematician;1845 - 1918). His work as a champion of the 
infinite brought him great personal joy coupled with extreme professional hostility and 
devastating emotional grief. 
 
Cantor’s idea, and the profound revelations that follow from it, was simple. If we consider 
pursuing a quantitative study of the infinite, we need a new way to “count.” In the realm of the 
infinite our standard methods will be of little use. Cantor’s idea was to use matching as our way 
of counting. 
It is an obvious choice. Those who cannot count, very small children for example, are certainly 
aware of such matching. They can tell you whether the number of popsicles in the freezer 
outnumber the children at the party, or conversely, without counting - they simply try to match 
popsicles to friends. 
 
Since you already know how to count, let’s consider a few examples where matching is 
important. 

                                                
1 From Mind Tools: The Five Levels of Mathematical Reality.  



1. The NCAA Women’s Division 1 Basketball Tournament is a single elimination tournament 
with 64 teams. Determine how many games are played in this tournament. 
 
2. There are many ways to solve the problem in Investigation 1. A particularly elegant way uses 
matching. Match losers to games to show how you can immediately determine how many 
games are played in the tournament. 
 
3. How many games are played in a single elimination tournament with 2n teams? Explain. 
 
4. Draw several polygons.2 For each count the number of vertices, aka corners, and edges. 
 
5. How does the number of vertices seem to be related to the number of edges in your 
polygons. 
 
6. Devise a nice way to match vertices and edges that proves why your relationship in 
Investigation 5 holds for all polygons. 
 

 
 

Strands of DNA 
 
The figure above is a schematic diagram of Deoxyribonucleic acid, also known as DNA. Notice 
that there are two strands that come together like the two sides of zipper. Each letter represents 
one of the bases adenine(A), cytosine(C), guanine(G), and thymine(T). A base on one strand 
binds to the base opposite on the other strand. These are called DNA base pairs. 
 
7. Look at the base pairs that make up the length of DNA in Figure 5.2. What do you notice 
about these pairs? 
 
In fact, the matching that you describe in Investigation 7 is the only kind of matching that is 
possible, the so-called complementary base pairing. When organism grow DNA is replicated. 
Tremendously long lengths of DNA which are twisted and knotted up somehow knows how to 

                                                
2 It is important to remember that polygons are simple, that is, their edges cannot cross and their is only one interior 

region. 



unknot itself3, zips into two pieces, and then matches free base pairs to each strand to complete 
the replication. 
 
In other words, the very basis of life involves matching at the most basic level. 
 
8. Think up your own non-trivial example of matching. 
 
 
Now that you’ve thought about matching a bit, let’s return to counting. What is it about the 
number three that gives it its “threeness”? What is common about three kids, three pebbles, 
three Magi, three daily meals, three colors on a stoplight, three races in horseracing’s Triple 
Crown, and 
all other things we say there are three of? What they share is that we can match the elements 
that make up each group (set) in a one-to-one way: 

Addie  ↔    granite      ↔   Melchior  ↔  breakfast  ↔    red       ↔   
Kentucky Derby  
Jacob  ↔    quartz      ↔   Caspar     ↔  lunch        ↔    blue      ↔   
Preakness stakes  
KC      ↔   feldspar     ↔   Balthasar ↔  dinner       ↔    green    ↔   
Belmont stakes  
 
There are three in each group because each group can be matched with {1,2,3} which serves 
as the defining three element group. 
 
To make this formal in a mathematical way we simply use the language that we have developed 
before. We notice that the objects of our study will be elements that we have grouped together 
as sets - just like in Chapter 2. Our way of matching is a one-to-one correspondence between 
two sets A and B which we define to be a rule4  which matches each element from A with 
exactly one element of B and each element of B with exactly one element of A 
 
Previously we used an intuitive notion of the size of sets - we just counted to find the cardinality 
of a given set. Now we can make a definition - one that we can use for the infinite as well. The 
set {a,e,i,o,u} has cardinality 5, by definition, because it can be put in a one-to-one 
correspondence with the set of the first five natural numbers, {1,2,3,4,5}. Namely, the matching 
rule that provides the one-to-one correspondence is 

a  ↔ 1 e  ↔ 2 i  ↔ 3 o ↔ 4 u ↔ 5.  
 
Of course, not all sets have the same cardinality. How does our matching help us count here? 

                                                
3 Actually the field of knot theory is playing a critical role in understanding the physical chemistry  

behind DNA replication 
4 More formally, the “rule” is a function that is both one-to-one and onto. 



Here’s an example. The cardinality of {a,e}, which is 2, is strictly less than the cardinality of 
{1,2,3,4,5}, which is 5, simply because 

● a and e can be put in a one-to-one correspondence with any pair of elements from 
{1,2,3,4,5} 

● a and e can never be put in one-to-one correspondence with all of {1,2,3,4,5}. 
 
So we say the cardinality of {a,e} is strictly less than the cardinality of {1,2,3,4,5} and we write 2 
< 5. 
 
This is obvious, there’s nothing surprising here. Yet... 
 
Let us see what happens when we compare infinite sets in this way. 

 
 

Comparing Infinite Sets 
9. Let S = {1,4,9,16,...} be the set of squares. Name seven other elements of this set. 
 
10. Intuitively, which is larger, the set S of squares or the set N = {1,2,3,...} of natural numbers? 
 
11. Express the set S by writing each element as a square. 
 
 
12. Use Investigation 11 to find a one-to-one correspondence between the set S of squares and 
the set N of natural numbers. 
 
13. What does Investigation 12 tell you about the relative sizes of the set S of squares and the 
set N of natural numbers? 
 
14. How does your answer to Investigation 13 compare with your answer to Investigation 10? 
 
 
The apparent paradox indicated in Investigation 14is known as Galileo’s paradox. This 
paradox prompted Galileo to conclude: 

We can only infer that the totality of all numbers is infinite, and that the number of 
squares is infinite...; neither is the number of squares less than the totality of all 
numbers, nor the latter greater than the former; and finally, the attributes “equal,” 
“greater,” and “less,” are not applicable to infinite, but only to finite quantities. 

 



As we have noted, Galileo’s conclusion is intuitively compelling and was generally accepted by 
mathematicians and philosophers for millennia. What we will discover is that if we open our 
minds as Cantor did, the infinite is a much richer, varied landscape. 
 
The figure below shows a perspective-like drawing. The point 0 on L1 is matched with the point 
0 on L2 and the point 1 on L1 is matched with the point 2 on L2. 
 

 
 
15. Using the matching illustrated in the Figure above, to which point on L2 does the point 1

2
on L1 

correspond? 
 
16. Similarly, to which point on L1 would the point 1

4
 correspond to? 

 
17. To which point on L2 does the point 7

8
 on L1 correspond to? 

 
18. To which point on L1 does the point 11

16
 on L2 correspond to? 

 



19. Explicitly find the correspondence between several other points on L1 and L2. 
 
20. Can you find a general rule or description to describe the one-to-one correspondence 
between the points on L1 and L2 precisely? 
21. Construct a new Figure to find a one-to-one correspondence between lines L1 of length one 
and L3 of length 3. 
 
22. Can you describe this one-to-one correspondence precisely as you did the other in 
Investigation 20? 
 
23. Construct another Figure to find a one-to-one correspondence between lines L1 of length 
one and L10 of length 10. 
 
24. Can you describe this one-to-one correspondence precisely as you did the other in 
Investigation 22? 
 
25. Will the method you have been using provide a one-to-one correspondence between any 
two lines with finite lengths? Explain. 
 
26. Can you use this method to find a one-to-one correspondence between a line L1 of length 
one and a line L∞ which extends indefinitely in both directions? Explain. 
 

Consider the Figure below, where points on the semicircle LCircle are projected onto the line L∞ 

extending indefinitely in both directions. In three dimensions, projections of this sort are the 
fundamental tool used to map our spherical earth onto flat maps. All projections introduce 
distortions, the type (e.g. distorted areas, distorted distances, or distorted angles) of which 
depends on the mathematical nature of the projection chosen. Which map is “best” is a 
continuing source of significant controversy. 
 

 
Stereographic projection. 

 

27. Does the Figure above help provide a one-to-one correspondence between LC and L∞? 
Explain. 
 
28. What do all the results in Investigations 20-27 tell you about the cardinalities of line 
segments? 
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