
 

More Mysteries of π 

Area πs 

π also arises in the area formula circle. Why is that so? We could send you out to measure the 
areas of some circles, but measuring the area of circles is quite hard. Archimedes was a major 
contributor to our understanding of circular areas and perimeters.  
 
 
Instead, here we’ll return to general geometric shapes. 
 
1. Why does the area formula for a circle, 𝐴𝐴 = 𝜋𝜋𝑟𝑟2, involve r2 and not simply r? 
 
 
2. Do you think the area formulas for our families of shapes should all involve r2 even though the 
perimeters involved only r? Explain. 
 
 
 
 
3. For each of the shapes below determine the area of the shape. 



 
 

 
 
 

4. Determine the ratio 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝑟𝑟2

 for each shape. What do you notice? 

 
5. Scale the original shape so the radius is scaled from 1 to r where r > 0 is any scaling factor. 

Determine the area, A, and the ratio 
𝐴𝐴
𝑟𝑟2

. 

 
6. You now have proven a formula for the area of your chosen shape as it is scaled to any size. 
Compare and contrast this formula with the formulae 𝐴𝐴 = 𝜋𝜋𝑟𝑟2 P

 for circles. Does it make sense to 
say that you have found a π-like area constant for your chosen shape? Explain. 
 
 
As with perimeters, this behavior is perfectly natural from the perspective of dimension. The 
area is a measure of the interior of the shape, the interior being two-dimensional. The length 
indicated by r is one-dimensional. As the shape is scaled by a factor of m the new indicated 
length is mr, the area of the new interior is m2A and the ratio of the new area to the square of the 
new length is: 

. 



 
As with perimeters, this ratio is unchanged! 
 
At this stage in the discussion with perimeters we noted that there was no clear evidence in the 
historic record that the ancient Greeks were able to prove that this ratio is constant. In contrast, 
the constancy of the ratio for areas of circles is proven as Proposition II of Book XII of Euclid’s 
Elements. This despite the fact that measuring, approximately, circumference is simple while it 
is remarkably hard to measure area. 
 

In terms of rigorous foundations it would be more reasonable to define π as the ratio 
𝐴𝐴
𝑟𝑟2

 which 

we can prove using basic geometry! 
 
This brings us to a very interesting question: If π ≈ 3.14159 is the constant for the 

c i r cumf e r ence  ( i f  we  meas ur e  vi a  C = πd, otherwise the constant is 2π  since C = 2πr), 
why does this constant have anything to do with the area constant? 
 
7. For each of the three shapes you have chosen to investigate, compare their π -like perimeter 
constant to their π -like area constant. Are any of these constants the same? Do you see any 
relationships between the two constants? 
 
Returning to the case of circle, the miracle that the constant in question appears to be π  in both 
cases is something that needs to be proven so we can have certainty. 
 

 
Sectored Circles 

 
Please use the enlarged copies of the sectored circles above on the last page. 
 
8. Cut out the sectored circle on the left. Try to rearrange the pieces in a way that they create a 
shape that resembles a shape whose area is easy to determine. 
 
9. Repeat Investigation 8 with the sectored circle in the middle. Try to make an arrangement 
that is similar for each of these circles. 
 



10. Repeat Investigation 8 with the sectored circle on the right. Try to make an arrangement that 
is similar for each of these circles. 
 
11. Suppose you kept sectoring the circle into more and more congruent sectors. Could you 
continue to arrange the pieces as you did above?  
 
12. If you continued to do this indefinitely, in the limit what would be the resulting shape? 
 
13. Determine the area of this shape in terms of the original dimensions of the circle. 
 
14. Explain how this establishes a direct link between the perimeter constant and the area 
constant for a circle. 
 
 
 
15. Return your attention to the sectored circles. Can you adapt your strategy to give an 
alternative explanation why the perimeter and area π-like constants for these shapes are equal? 
 

 
Sectored circles 

 
This argument has appeared many times historically, including a seventeenth century Japanese 
text and the works of Leonardo da Vinci (Italian painter, sculptor, architect, musician, 
mathematician, engineer, inventor, anatomist, geologist, cartographer, botanist, and writer; 1452 
- 1519).1 It was likely known much earlier than this. It is hard to believe that Archimedes was 
unaware of it. 
 
We now have a real link which unites the circumference constant for circles back to the area 
constant. This approach is not typical of the type of geometry practiced by Euclid. Rather, it is 
typical of that practiced by Archimedes, in ways that foreshadowed the development of calculus 
almost two millennia later. We now, finally, have proof that the perimeter constant is the same 
as the area constant - our friend π. 

                                                
1 See pp. 17-19 of A History of Pi by Petr Beckmann. 



Taxicab π 
We now consider an alternative geometry. 
In this new geometry, called Taxicab 
geometry, distances are measured the way 
taxicabs drive city whose streets are laid out 
so they form a regular, square grid. If you 
wished to travel by cab from one corner to 
the opposite corner on the same block a cab 
would have to drive up one block and then 
over one block. Hence, the distance 
between these two points is 2. This is a 
different way to measure distances than in 
Euclidean geometry. In Euclidean geometry 
the distance would be, calculated via the 
Pythagorean theorem, 2. This is the 
distance the proverbial crow flies. But a 
taxicab cannot drive diagonally through the 
center of a block. 
 
 
16. Give a precise definition of a circle. 
 
17. On square grid graph paper choose and clearly mark an origin. Find and mark a point 
whose taxicab distance from the origin is 3 blocks. 
 
18. Find and mark another point whose taxicab distance from the origin is 3 blocks. 
 
19. Repeat Investigation 18. 
 
20. Continue to repeat Investigation 18 until you have found all points whose taxicab distance 
from the origin is 3 blocks. How many such points have you found? In what shape are these 
points located? 
 
The taxicab geometry we would like to consider is continuous taxicab geometry, where one can 
follow the streets which make up our grid but can also move along “alleyways” that occur 
anywhere between the main streets as long as they run parallel to the streets. 
 
21. Utilizing alleyways, find several more points whose taxicab distance from the origin is 3. 
 
22. If you continued using such alleyways, draw the figure which represents all points that are a 
distance of 3 blocks from the origin. 
 
23. What shape is formed by all of these points? 



 
24. Your shape is formed by all points that are a fixed distance from the origin. Refer to 
Investigation 16. What do we call such a shape? (Revise your definition, if you wish.) 
 
25. Determine the circumference of your circle of radius 3. Explain carefully how you have 
determined the circumference. 
 
26. Now draw a circle of radius 2. 
 
27. What is the circumference of this circle? 
 
28. Now draw a circle of radius 1. 
 
29. What is the circumference of this circle? 
 
30. Based on these examples, make a conjecture about the circumference of a circle of radius r 
in taxicab geometry for positive integers r > 0. 
 
31. Prove your conjecture. 
 
32. Having proved the formula for the circumference of circles, determine the value of pi in 
Taxicab geometry. 

 

Spherical π 
You may object that π = 4 is disingenuous as we 
are measuring distances so differently in 
Taxicab geometry. Taxicab geometry is a 
legitimate geometry. Let us then consider a 
more natural geometry - the geometry of the 
surface of the earth. We are, after all, creatures 
of the earth. 
As noted earlier, the relinquishing of Euclid’s 
parallel postulate caused a revolution in 
geometry in the nineteenth century. Ancient mariners and astronomers did not wait that long to 
study spherical geometry - they were adept at it close to two millennia earlier. 
 



Find a large spherical object. Lenart spheres are wonderful manipulatives for exploring spherical 
geometry. If you do not have access, a basketball or other similarly sized spherical object will 
work fine. 
 
33. On a flat surface, how can you use a piece of string and writing instrument to draw a circle? 
 
34. How do you measure the radius of your circle? 
 
35. You should be able to repeat this same process on your sphere. Draw a circle on the sphere 
in this way. Does it look like a legitimate circle? 
 
36. Is the string the shortest distance along the surface of the sphere to get from your origin to 
the circle? If so, does it make sense to call this the radius? 
 
37. Measure your radius and measure the circumference of your circle. 
 
38. Draw another circle on the sphere. Measure its radius and its circumference. 
 
39. Repeat Investigation 38 drawing a circle whose size is much different than those already 
drawn. 
 
40. Repeat Investigation 38, again trying to draw a circle of a significantly different size. 
 
41. If you let your radius become so large that the circle is in the hemisphere opposite to the 
“center” where the string is anchored, what happens to the circumference of the circle as the 
radius gets larger. 
 
42. For each of your circles, compute the ratio  of the circumference to twice the radius. This 
should be our spherical π. Is it? Explain. 
 
 

But Why 3.14159...? 
So in some geometries, shapes have their own πs, often a different π for perimeter than for 
area. In some they don’t. 
 
So the Euclidean circles we are used to have their own π - one you have discovered is the 
circumference and area constant. But why is this π such a mysterious, complex number? After 
all, circles are the most symmetric, most perfect of shapes. Why is Euclidean circles’ π so 
esoteric? 
The reason is because our way of measuring length is not compatible with the nature of circles. 
We measure length with straight rulers and square units of area. This is fine for squares and 
triangles. But our entire measurement apparatus is contrary to the nature of circles. We have a 



different paradigm, a different perspective than the circle. The operation of the circle must be 
translated back into our language of lengths and areas. The translation is complex. It is π. 
It should not be any other way, should it? π is the crowning jewel of the beauty of the circle 
perfectly appropriate. 
 
Our race’s efforts to understand π is one of the greatest stories of exploration our history holds. 
Each culture in each age has worked toward understanding its secrets. And their efforts 
illustrate the evolution of our ways of knowing. What we have found in each case is that π 
transcends any finite method of measurement. 
 
Each of the formulas below is a formula for π. Each is listed under the name(s) of the 
mathematician who we believe is the first to discover it. 
 
 
Nilakantha Somayaji (Indian mathematician and astronomer; 1444 - 1544) 

 
 
Francois Viete (French mathematician; 1540 - 1603) 

 
 
John Wallis (English mathematician; 1616 - 1703) 

 
 
Isaac Newton (English mathematician and physicist; 1642 - 1727) 

 
 
Madhava (Indian mathematician; circa 1380 - circa 1420), James Gregory (Scottish 
mathematician; 1638 - 1675) and G.W. Leibniz (German mathematician and philosopher; 1646 
1716) 

 
 
William Brouncker (English mathematician; 1620 - 1684) 

 
 
Abraham Sharp (English mathematician; 1653 - 1742) 

 
 



Leonhard Euler (Swiss mathematician; 1707 - 1783) 

 
 
Srinivas Ramanujan (Indian mathematician; 1887 - 1920) 

 
 
David Chudnovsky (American mathematician; 1947 - ) and Gregory Chudnovsky (American 
mathematician; 1952 - ) 

 
 
David H. Bailey (American mathematician and computer scientist; 1948 - ), Peter Borwein 
(Canadian mathematician; 1953 - ) and Simon Plouffe (Canadian mathematician; 1956 - ) 
Continued Fraction whose coefficients follow no pattern, like the digits of π 
 

 
 
Continued Fraction whose coefficients follow no pattern, like the digits of π 

 
 
Each of these methods involves the infinite. 

 

Current Status of π 
Using continued fractions, in 1761 Johann Heinrich Lambert (Swiss mathematician and 
physicist; 1728 - 1777) was able to prove that π is irrational - it cannot be written as fraction 
using whole numbers. It is not hard to show that the decimal expansion of any irrational number 
is nonrepeating. Hence, the decimal expansion of π does not repeat. 
 
Euler and others had long expected that π was even more esoteric, that it was transcendental - 
not the solution to any polynomial equation with rational coefficients. π resisted for quite some 
time until Carl Louis Ferdinand von Lindemann (German mathematician; 1852 - 1939) proved 
that π was transcendental in 1882. This was seen as a remarkable achievement. 
 



In 1995 two remarkable results were obtained, both spigot algorithms for computing the digits of 
π. Up to that point all efforts to compute digits of π relied on infinite expressions and 
sophisticated floating point computer arithmetic. The first, by Stanley Rabinowitz (; - ) and Stan 
Wagon (; - ), was a method for computing the digits of π one at a time without any reference to 
previous digits or need for high precision, floating point arithmetic. All that need be specified in 
advance was how many digits were desired. The second, by David H. Bailey (American 
mathematician and computer scientist; 1948 - ), Peter Borwein (Canadian mathematician; 1953 
- ) and Simon Plouffe (Canadian mathematician; 1956 - ) allowed any single digit of π to be 
determined directly without any knowledge of previous digits or much significant calculation. The 
drawback? The digits are computed not as base ten digits but as base sixteen digits. Why does 
π submit more readily to base sixteen computations? We do not know. 
And what about the claim in Takei’s meme that the digits of π contain every possible finite string 
of digits with the expected frequency? Such numbers are called normal. It is unknown whether π 
is normal. This remains a great mystery. It is a mystery we may never know the answer to. 
 
While the open questions in mathematics far outnumber the questions that have been 
answered, this is another situation where there is a remarkable silver lining. Mathematicians 
have proven that the numbers that are normal outnumber those that are not by any measure. 
Picked randomly, a number is overwhelmingly likely to be normal - to have the remarkable 
properties claimed in the meme. 

3.8.9 You and π 
At the outset of this section you were asked some questions about your relationship with π. So 
how has your relationship with π changed through these investigations? 
 
43. Write a brief essay of one- to two-pages which describes how your relationship with π has 
changed through the course of these investigations. Some possible topics to include in your 
essay are: 

● What did you learn about π through these investigations? 
● What was most surprising to you? 
● Were some of the questions you had at the outset answered by your investigations? 
● Are you more or less curious about π having completed these investigations? 
● Does π make more or less sense to you having completed these investigations? Is this 

good or bad? 
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