
Logical Form and Logical Equivalence
The central concept of deductive logic is the concept of argument form. An argument is a
sequence of statements aimed at demonstrating the truth of an assertion. The assertion at the
end of the sequence is called the conclusion, and the preceding statements are called
premises. To have confidence in the conclusion that you draw from an argument, you must be
sure that the premises are acceptable on their own merits or follow from other statements that
are known to be true.

Consider the following two arguments, for example. Although their content is very different, their
logical form is the same.

Argument 1 If the program execution results in division by zero, then the computer will
generate an error message.

Argument 2 If x is a real number such that x < −2 or x > 2, then x2 > 4.

1. Identify the premise(s) and conclusion of each of the arguments above.

2. Fill in the blanks below so that argument (b) has the same form as argument (a). Then
represent the common form of the arguments using letters to stand for component sentences.

a. If Jane is a math major or Jane is a computer science major, then Jane will take Math
150.
Jane is a computer science major. Therefore, Jane will take Math 150.

b. If logic is easy or , then .
I will study hard.
Therefore, I will get an A in this course.

Representing Common Form
To illustrate the logical form of these arguments, you will use letters of the alphabet (such as p,
q, and r) to represent the component sentences. Both arguments in question 2 are in the form:

If p or q, then r .
q.
Therefore, r .

3. Rewrite 2a so that it follows the form:

If p or q, then r .
p.
Therefore, r .

and the expression “not p” to refer to the sentence “It is not the case that p.” Then the common
logical form of both the previous arguments is as follows:

If p or q, then r .
Therefore, if not r , then not p and not q.

Statements
Most of the definitions of formal logic have been developed so that they agree with the natural
or intuitive logic used by people who have been educated to think clearly and use language
carefully. The differences that exist between formal and intuitive logic are necessary to avoid
ambiguity and obtain consistency.
In any mathematical theory, new terms are defined by using those that have been previously
defined. However, this process has to start somewhere. A few initial terms necessarily remain
undefined. In logic, the words sentence, true, and false are the initial undefined terms.

For example, “Two plus two equals four” and “Two plus two equals five” are both statements,
the first because it is true and the second because it is false. On the other

hand, the truth or falsity of “He is a college student” depends on the reference for the pronoun
he. For some values of he the sentence is true; for others it is false. If the sen- tence were
preceded by other sentences that made the pronoun’s reference clear, then the sentence would
be a statement. Considered on its own, however, the sentence is neither true nor false, and so it
is not a statement. We will discuss ways of transforming sentences of this form into statements
in Section 3.1.

Similarly, “x + y > 0” is not a statement because for some values of x and y the sentence is
true, whereas for others it is false. For instance, if x = 1 and y = 2, the sentence is true; if x = −1
and y = 0, the sentence is false.

Compound Statements
We now introduce three symbols that are used to build more complicated
logical expressi ons out of simpler ones. The symbol ∼denotes not, ∧ denotes

and, and ∨ denot es or. Given a statement p, t he s ent ence “∼p” is read “not p” or “It is not
the case that p” and is called the negation of p. In some computer languages the symbol ' i s
us ed i n pl ace of ∼. Gi ven anot he r s t a t ement q, the sentence “ p ∧ q” is read “ p and
q” and is called the conjunction of p and q. The sentence “ p ∨ q” is read “ p or q” and is
called the disjunction of p and q.

I n expr es s i ons t ha t i nc l ude t he s ymbol ∼as wel l as ∧ or ∨, t he order of
operations specifies that ∼ is performed first. For instance, ∼p ∧ q = (∼p) ∧ q. I n l ogi ca l
expr es - s i ons , a s i n or di na r y a l gebr a i c expr es s i ons , t he or de r of
oper a t i ons can be ove r r i dden t hr ough t he us e of pa r ent hes es . Thus ∼(p ∧ q)
represents the negation of the conjunction of p and q. I n t hi s , as i n mos t t r ea t ment s
of l ogi c , t he s ymbol s ∧ and ∨ a r e cons i der ed coequal i n or der of oper a t i on,
and an expr es s i on s uch as p ∧ q ∨ r is considered ambigu- ous. This expression must be
written as either (p ∧ q) ∨ r or p ∧ (q ∨ r) t o have meani ng. A var i e t y of Engl i s h
wor ds t r ans l a t e i nt o l ogi c as ∧, ∨, or ∼. For i ns t ance , t he wor d but translates
the same as and when it links two independent clauses, as in “Jim is tall

but he is not heavy.” Generally, the word but is used in place of and when the part of the sentence
that follows is, in some way, unexpected. Another example involves the words neither-nor. When
Shakespeare wrote, “Neither a borrower nor a lender be,” he meant, “Do not be a borrower and do
not be a lender.” So if p and q are statements, then

Table

Example 2.1.2 Translating from English to Symbols: But and Neither-Nor

Write each of the following sentences symbolically,
letting h = “It is hot” and s = “It is sunny.”
a. It is not hot but it is sunny.
b. It is neither hot nor sunny.

Solution
a. The given sentence is equivalent to “It is not hot and it is

sunny,” which can be written symbolically as ∼h ∧ s.
To say it is neither hot nor sunny means that it is not hot and it is not sunny. Therefore, the given sentence can be written
symbolically as ∼h ∧ ∼s.

The notation for inequalities involves and and or statements. For instance,
if x, a, and b
are particular real numbers, then

Note that the inequality 2 ≤ x ≤ 1 i s not

s a t i s fied by any r ea l

number s becaus e 2 ≤ x ≤ 1

 means 2 ≤ x and x

≤ 1,
and this is false no matter what number x happens to be. By the way,
the point of specify- ing x, a, and b to be particular real numbers is
to ensure that sentences such as “x < a” and “x ≥ b” are either true
or false and hence that they are statements.

Example 2.1.3 And, Or, and Inequalities

Suppose x is a particular real number. Let p, q, and r symbolize “0
< x ,” “x < 3,” and “x = 3,” respectively. Write the following
inequalities symbolically:
a. x ≤ 3 b. 0 < x < 3 c. 0 < x ≤ 3

Solution
a. q ∨ r b. p ∧ q c. p ∧ (q ∨ r) ■

Truth Values
In Examples 2.1.2 and 2.1.3 we built compound sentences out of
component statements and the terms not, and, and or. If such
sentences are to be statements, however, they must have well-
defined truth values—they must be either true or false. We now
define such compound sentences as statements by specifying their
truth values in terms of the statements that compose them.

The negation of a statement is a statement that exactly expresses
what it would mean for the statement to be false.

If p is a statement variable, the negation of p is “not p” or “It is not the case that p” and is denoted ∼p. It has opposite truth
value from p: if p is true, ∼p is false; if p is false, ∼p is true.

The truth values for negation are summarized in a truth table.
Truth Table for ∼ p

In ordinary language the sentence “It is hot and it is sunny” is understood to be true when both
conditions—being hot and being sunny—are satisfied. If it is hot but not sunny, or sunny but not hot, or
neither hot nor sunny, the sentence is understood to be false. The formal definition of truth values for an
and statement agrees with this general understanding.

Def

If p and q are statement variables, the conjunction of p and q is “ p and q,” denoted p ∧ q. It is true when, and only when,
both p and q are true. If either p or q is false, or if both are false, p ∧ q is false.

The truth values for conjunction can also be summarized in a truth table. The table is

obtained by considering the four possible combinations of truth values for p and q. Each
combination is displayed in one row of the table; the corresponding truth value for the whole
statement is placed in the right-most column of that row. Note that the only row containing a T
is the first one since the only way for an and statement to be true is for both component
statements to be true.

Truth Table for p ∧ q

By the way, the order of truth values for p and q in
the table above is TT, TF, FT, FF. It is not absolutely
necessary to write the truth values in this order,
although it is customary to do so. We will use this order
for all truth tables involving two statement variables. In
Example 2.1.5 we will show the standard order for truth
tables that involve three statement variables.

In the case of disjunction—statements of the form “
p or q”—intuitive logic offers two alternative
interpretations. In ordinary language or is sometimes
used in an exclusive sense (p or q but not both) and
sometimes in an inclusive sense (p or q or both). A
waiter who says you may have “coffee, tea, or milk”
uses the word or in an exclusive sense: Extra payment is
generally required if you want more than one beverage.
On the other hand, a waiter who offers “cream or sugar”
uses the word or in an inclusive sense: You are entitled
to both cream and sugar if you wish to have them.

Mathematicians and logicians avoid possible
ambiguity about the meaning of the word or by
understanding it to mean the inclusive
“and/or.” The symbol ∨ comes from the

Latin word vel, which means or in its inclusive
sense. To express the exclusive or, the
phrase p or q but not both is used.

Def

If p and q are statement variables, the disjunction of p and q is “ p or q,” denoted p ∨ q. It is true when either p is true, or q
is true, or both p and q are true; it is false only when both p and q are false.

Here is the truth table for disjunction:

Truth Table for p ∨ q

Evaluating the
Truth of More
General Compound
Statements

Now that truth values have been assigned to ∼p, p ∧ q, and p ∨ q,
consider the question of assigning truth values to more
complicated expressions such as ∼p ∨ q, (p ∨ q) ∧ ∼(p ∧
q), and (p ∧ q) ∨ r . Such expressions are called statement
forms (or propositional forms). The close relationship between
statement forms and Boolean expressions is discussed in Section
2.4.

Def

A statement form (or propositional form) is an expression made up of statement variables (such as p, q, and r) and
logical connectives (such as ∼, ∧, and ∨) that becomes a statement when actual statements are substituted for the component
state- ment variables. The truth table for a given statement form displays the truth values that correspond to all possible
combinations of truth values for its component state- ment variables.

To compute the truth values for a statement form, follow rules

similar to those used to evaluate algebraic expressions. For each
combination of truth values for the statement variables, first evaluate
the expressions within the innermost parentheses, then evaluate the
expressions within the next innermost set of parentheses, and so
forth until you have the truth values for the complete expression.

Example 2.1.4 Truth Table for Exclusive Or
Construct the truth table for the statement form (p ∨ q) ∧ ∼(p ∧ q). Note that when or is used in its
exclusive sense, the statement “ p or q” means “ p or q but not both” or “ p or q and not both p and q,”
which translates into symbols as (p ∨ q) ∧ ∼(p ∧ q). This is sometimes abbreviated p ⊕ q or p
XOR q.

Solution Set up columns labeled p, q, p ∨ q, p ∧ q, ∼(p ∧ q), and (p ∨ q) ∧ ∼(p ∧ q). Fill in
the p and q col umns wi t h a l l t he l ogi ca l l y pos s i bl e combi na t i ons
of T’ s and F’ s . Then us e t he t r ut h t abl es f or ∨ and ∧ t o fil l i n
t he p ∨ q and p ∧ q columns with the appropriate truth values. Next fill in the ∼(p ∧ q)
column by taking the opposites of the truth values for p ∧ q. For exampl e , t he ent r y
f or ∼(p ∧ q) in the first row is F because in the first row the truth value of p ∧ q is T.

Finally, fill in the (p ∨ q) ∧ ∼(p ∧ q) col- umn by considering the truth table for an and
statement together with the computed truth values for p ∨ q and ∼(p ∧ q). For example, the
entry in the first row is F because the entry for p ∨ q i s T, t he ent r y f or ∼(p ∧ q) is
F, and an and statement is false unless both components are true. The entry in the second row is
T because both components are true

in this row.

Truth Table for Exclusive Or: (p ∨ q) ∧ ∼(p ∧ q)

Example 2.1.5 Truth Table for (p ∧ q) ∨ ∼r

Construct a truth table for the statement form (p ∧ q)
∨ ∼r .

Solution Make columns headed p, q, r, p ∧ q, ∼r, and (p ∧ q) ∨ ∼r . Enter the eight logically possible
combinations of truth values for p, q, and r in the three left-most columns. Then fill in the truth values for
p ∧ q and for ∼r . Complete the table by con- sidering the truth values for (p ∧ q) and for ∼r and the
definition of an or statement. Since an or statement is false only when both components are false, the only
rows in which the entry is F are the third, fifth, and seventh rows because those are the only rows in
which the expressions p ∧ q and ∼r are both false. The entry for all the other rows is T.

The essential point about assigning truth values to compound statements is that it allows
you—using logic alone—to judge the truth of a compound statement on the basis of your
knowledge of the truth of its component parts. Logic does not help you determine the truth or
falsity of the component statements. Rather, logic helps link these separate pieces of information
together into a coherent whole.

Logical Equivalence
The statements

6 is greater than 2 and 2 is less than 6

are two different ways of saying the same thing. Why?
Because of the definition of the phrases greater than
and less than. By contrast, although the statements

(1) Dogs bark and cats meow and (2) Cats meow and dogs bark

are also two different ways of saying the same thing, the
reason has nothing to do with the definition of the
words. It has to do with the logical form of the
statements. Any two statements whose logical forms are
related in the same way as (1) and (2) would either both
be true or both be false. You can see this by examining
the following truth table, where the statement variables
p and q are substituted for the component statements
“Dogs bark” and “Cats meow,” respectively. The table
shows that for each combination of truth values for p
and q, p ∧ q is true when, and only when, q ∧ p is
true. In such a case, the statement forms are called
logically equivalent, and we say that (1) and (2) are
logically equivalent statements.

Def

Two statement forms are called logically equivalent if, and only if, they have identical truth values for each possible
substitution of statements for their statement variables. The logical equivalence of statement forms P and Q is denoted by
writing P ≡ Q. Two statements are called logically equivalent if, and only if, they have logically equivalent forms when

identical component statement variables are used to replace
identical component statements.

Testing Whether Two Statement Forms P and Q Are Logically Equivalent

1. Construct a truth table with one column for the truth values of P and another column for the truth values of Q.
2. Check each combination of truth values of the statement variables to see whether the truth value of P is the same as the

truth value of Q.
a. If in each row the truth value of P is the same as the truth value of Q, then P

and Q are logically equivalent.
b. If in some row P has a different truth value from Q, then P and Q are not logically equivalent.

Example 2.1.6 Double Negative Property: ∼(∼ p) ≡ p

Construct a truth table to show that the negation of the
negation of a statement is logically equivalent to the
statement, annotating the table with a sentence of
explanation.

Table

\

There are two ways to show that statement forms P and Q are not logically equiva- lent. As
indicated previously, one is to use a truth table to find rows for which their truth values differ.
The other way is to find concrete statements for each of the two forms, one of which is true and
the other of which is false. The next example illustrates both of these ways.

Example 2.1.7 Showing Nonequivalence
Show t ha t t he s t a t ement f or ms ∼(p ∧ q)
and ∼p ∧ ∼q are not logically equivalent.

Solution
a. This method uses a truth table annotated with a sentence of explanation.

Table

a. This method uses an example to show that ∼(p ∧ q) and ∼p ∧
∼q are not logically equivalent. Let p be the statement “0 < 1”
and let q be the statement “1 < 0.” Then

∼(p ∧ q) is “It is not the case

that both 0 < 1 and 1 < 0, ” which is
true. On the other hand,

∼p ∧ ∼q is “0 ≮ 1 and 1 ≮ 0, ”
which is false. This example shows that there are concrete statements

you can substi-
tute for p and q to make one of the statement forms true and the other false. Therefore, the statement
forms are not logically equivalent.

Example 2.1.8 Negations of And and Or: De Morgan’s Laws

For t he s t a t ement “J ohn i s t a l l and J i m
i s r edheaded” t o be t r ue , bot h
component s mus t be t r ue . So f or t he
s t a t ement t o be f a l s e , one or bot h
component s mus t be f a l s e . Thus t he
nega t i on can be wr i t t en as “J ohn i s not

tall or Jim is not redheaded.” In
gene r a l , t he nega t i on of t he conj unc t i on
of t wo s t a t ement s i s l ogi ca l l y
equi va l ent t o t he di s j unc t i on of t he i r
nega t i ons . Tha t i s , s t a t ement s of t he
f or ms ∼(p ∧ q) and ∼p ∨ ∼q are logically
equivalent. Check this using truth tables.

Table

Symbolically, ∼(p ∧ q) ≡ ∼p ∨ ∼q.

In the exercises at the end of this section you are asked to show the analogous law that the negation of the
disjunction of two statements is logically equivalent to the conjunction of their negations:

∼(p ∨ q) ≡ ∼p ∧ ∼q.

The two logical equivalences of Example 2.1.8 are known as De Morgan’s laws of logic in honor of
Augustus De Morgan, who was the first to state them in formal mathematical terms.

De Morgan’s Laws

The negation of an and statement is logically equivalent to the or statement in which each component
is negated.

The negation of an or statement is logically equivalent to the and statement in which each component
is negated.

Example 2.1.9 Applying De Morgan’s Laws
Write negations for each of the following statements:
a. John is 6 feet tall and he weighs at least 200 pounds.
b. The bus was late or Tom’s watch was slow.

Solution
a. John is not 6 feet tall or he weighs less than 200 pounds.
b. The bus was not late and Tom’s watch was not slow.

Since the statement “neither p nor q” means the same as “∼ p and ∼ q,” an alternative
answer for (b) is “Neither was the bus late nor was Tom’s watch slow.” ■

If x is a particular real number, saying that x is not less than 2 (x ≮ 2) means that x does not
lie to the left of 2 on the number line. This is equivalent to saying that either x = 2 or x lies
to the right of 2 on the number line (x = 2 or x > 2). Hence, x ≮ 2 is equivalent to x ≥ 2.
 Pictorially,

Similarly,

Example 2.1.10 Inequalities and De Morgan’s Laws

Use De Morgan’s laws to write the
negation of −1 < x ≤ 4.

Solution The given statement is equivalent to

−1 < x and x ≤ 4.

By De Morgan’s laws, the negation is

Caution! The negation of −1 < x ≤ 4 is not
−1 ≮ x $ 4. It is also not
−1 ≥ x > 4.

which is equivalent to

−1 ≮ x or x i 4,

−1 ≥ x or x > 4.

Pi c t or i a l l y, i f −1 ≥ x or x > 4, then x
lies in the shaded region of the number line, as shown
below.

De Morgan’s laws are frequently used in writing
computer programs. For instance, suppose you want
your program to delete all files modified outside a
certain range of dates, say from date 1 through date 2
inclusive. You would use the fact that

∼(date1 ≤ file_modification_date ≤ date2)

is equivalent to

(file_modification_date < date1) or (date2 < file_modification_date).

Example 2.1.11 A Cautionary Example
According to De Morgan’s laws, the negation of

p: Jim is tall and Jim is thin

i s
 ∼p: Jim is not tall or Jim is not thin

because the negation of an and statement is the or
statement in which the two components are negated.

Unfortunately, a potentially confusing aspect of the
English language can arise when you are taking
negations of this kind. Note that statement p can be
written more com- pactly as

Caution! Although the laws of logic are extremely useful, they should be used as an aid to thinking, not as a mechanical substitute for

pl: Jim is tall and thin.

When it is so written, another way to negate it is

∼(pl): Jim is not tall and thin.

But in this form the negation looks like an and statement. Doesn’t that
violate De Morgan’s laws?

Actually no violation occurs. The reason is that in formal logic the words and and or
are allowed only between complete statements, not between sentence fragments.

One lesson to be learned from this example is that when you apply De
Morgan’s laws, you must have complete statements on either side of each and and
on either side of each or.

it.
 ■

Tautologies and Contradictions
It has been said that all of mathematics reduces to
tautologies. Although this is formally true, most
working mathematicians think of their subject as having
substance as well as form. Nonetheless, an intuitive
grasp of basic logical tautologies is part of the
equipment of anyone who reasons with mathematics.

Definition
A tautology is a statement form that is always true regardless of the truth values of the individual statements substituted for
its statement variables. A statement whose form is a tautology is a tautological statement.
A contradication is a statement form that is always false regardless of the truth val- ues of the individual statements
substituted for its statement variables. A statement whose form is a contradication is a contradictory statement.

According to this definition, the truth of a tautological

statement and the falsity of a contradictory statement are due to
the logical structure of the statements themselves and are
independent of the meanings of the statements.

Example 2.1.12 Tautologies and Contradictions
Show that the statement form p ∨ ∼p is a tautology and that the

statement form p ∧ ∼p

is a contradiction

Example 2.1.13 Logical Equivalence Involving Tautologies and
Contradictions

If t is a tautology and c is a contradiction, show that p ∧

t ≡ p and p ∧ c ≡ c.

Summary of Logical Equivalences
Knowledge of logically equivalent statements is very useful for constructing arguments. It often happens
that it is difficult to see how a conclusion follows from one form of a statement, whereas it is easy to see
how it follows from a logically equivalent form of the statement. A number of logical equivalences are
summarized in Theorem 2.1.1 for future reference.

Theorem 2.1.1 Logical Equivalences

Table

The proofs of laws 4 and 6, the first parts of laws 1
and 5, and the second part of law 9 have already been
given as examples in the text. Proofs of the other parts
of the theorem are left as exercises. In fact, it can be
shown that the first five laws of Theorem 2.1.1 form a
core from which the other laws can be derived. The first
five laws are the axioms for a mathematical structure
known as a Boolean algebra, which is discussed in
Section 6.4.

The equivalences of Theorem 2.1.1 are general laws
of thought that occur in all areas of human endeavor.
They can also be used in a formal way to rewrite
complicated state- ment forms more simply.

Example 2.1.14 Simplifying Statement Forms
Use Theorem 2.1.1 to verify the logical equivalence

∼(∼p ∧ q) ∧ (p ∨ q) ≡ p.
Solution Use the laws of Theorem 2.1.1 to replace sections

of the statement form on the left by logically equivalent
expressions. Each time you do this, you obtain a
logically equivalent statement form. Continue making
replacements until you obtain the statement form on the
right.

∼(∼p ∧ q) ∧ (p ∨ q) ≡ (∼(∼p) ∨ ∼q) ∧ (p ∨ q) by De

Morgan’s laws
≡ (p ∨ ∼q) ∧ (p ∨ q) by the
double negative law

≡ p ∨ (∼q ∧ q) by the
distributive law
≡ p ∨ (q ∧ ∼q) by the

commutative law for ∧
≡ p ∨ c by the
negation law
≡ p by the

identity law. ■

Skill in simplifying statement forms is useful in
constructing logically efficient computer programs and
in designing digital logic circuits.

Although the properties in Theorem 2.1.1 can be
used to prove the logical equivalence of two statement
forms, they cannot be used to prove that statement
forms are not logically equivalent. On the other hand,
truth tables can always be used to determine both
equivalence and nonequivalence, and truth tables are
easy to program on a computer. When truth tables are
used, however, checking for equivalence always
requires 2n steps, where n is the number of variables.
Sometimes you can quickly see that two statement
forms are equivalent by Theorem 2.1.1, whereas it
would take quite a bit of calculating
t o s how t he i r equi va l ence us i ng t r ut h
t abl es . For i ns t ance , i t f ol l ows
i mmedi a t e l y f r om t he a s s oc i a t i ve l aw
f or ∧ t ha t p ∧ (∼q ∧ ∼r) ≡ (p ∧ ∼q) ∧ ∼r ,
whereas a truth table verification requires constructing a
table with eight rows.

Concepts and Procedures

1. An and statement is true if, and only if, both components are
 .

2. An or statement is false if, and only if, both components are
 .

3. Two statement forms are logically equivalent if, and only if, they always have .
4. De Morgan’s laws say (1) that the negation of an and state- ment is logically equivalent to the statement in which

each component is , and (2) that the negation of an or statement is logically equivalent to the statement in which
each component is .

1. A tautology is a statement that is always .
2. A contradiction is a statement that is always .

In each of 1–4 represent the common form of each argument using letters to stand for component sentences, and fill in the
blanks so that the argument in part (b) has the same logical form as the argument in part (a).

1. a. If all integers are rational, then the number 1 is rational. All integers are rational.

Therefore, the number 1 is rational.
b. If all algebraic expressions can be written in prefix notation, then .

 .
Therefore, (a + 2b)(a2 − b) can be written in prefix notation.

2. a. If all computer programs contain errors, then this program contains an error.
This program does not contain an error.
Therefore, it is not the case that all computer programs contain errors.

b. If , then . 2 is not odd.
Therefore, it is not the case that all prime numbers are odd.

3. a. This number is even or this number is odd. This number is not even.
Therefore, this number is odd.

b. or logic is confusing. My mind is not shot. Therefore, .
4. a. If n is divisible by 6, then n is divisible by 3.

If n is divisible by 3, then the sum of the digits of n is divisible by 3.
Therefore, if n is divisible by 6, then the sum of the dig- its of n is divisible by 3.
(Assume that n is a particular, fixed integer.)

b. If this function is then this function is differen- tiable.
If this function is then this function is continuous. Therefore, if this function is a polynomial, then this function

4. Indicate which of the following sentences are statements.
a. 1,024 is the smallest four-digit number that is a perfect square.
b. She is a mathematics major.
c. 128 = 26 d. x = 26

Write the statements in 6–9 in symbolic form using the symbols
∼, ∨, and ∧ and the indicated letters to represent component statements.
6. Let s = “stocks are increasing” and i = “interest rates are steady.”

a. Stocks are increasing but interest rates are steady.
b. Neither are stocks increasing nor are interest rates steady.

1. Juan is a math major but not a computer science major. (m = “Juan is a math major,” c = “Juan is a computer science
major”)

2. Let h = “John is healthy,” w = “John is wealthy,” and s =
“John is wise.”
a. John is healthy and wealthy but not wise.
b. John is not wealthy but he is healthy and wise.
c. John is neither healthy, wealthy, nor wise.
d. John is neither wealthy nor wise, but he is healthy.
e. John is wealthy, but he is not both healthy and wise.

3. Either this polynomial has degree 2 or it has degree 3 but not both. (n = “This polynomial has degree 2,” k = “This
polynomial has degree 3”)

4. Let p be the statement “DATAENDFLAG is off,” q the statement “ERROR equals 0,” and r the statement “SUM is less
than 1,000.” Express the following sentences in sym- bolic notation.
a. DATAENDFLAG is off, ERROR equals 0, and SUM is less than 1,000.
b. DATAENDFLAG is off but ERROR is not equal to 0.
c. DATAENDFLAG is off; however, ERROR is not 0 or SUM is greater than or equal to 1,000.
d. DATAENDFLAG is on and ERROR equals 0 but SUM is greater than or equal to 1,000.
e. Either DATAENDFLAG is on or it is the case that both ERROR equals 0 and SUM is less than 1,000.

11. In the following sentence, is the word or used in its inclu- sive or exclusive sense? A team wins the playoffs if it wins two games in a row or a
total of three games

Write truth tables for the statement forms in 12–15.
12. ∼p ∧ q 13. ∼(p ∧ q) ∨ (p ∨ q)
14. p ∧ (q ∧ r) 15. p ∧ (∼q ∨ r)

Determine whether the statement forms in 16–24 are logically equivalent. In each case, construct a truth table and include a sentence justifying
your answer. Your sentence should show that you understand the meaning of logical equivalence

16. p ∨ (p ∧ q) and p 17. ∼(p ∧ q) and ∼p ∧ ∼q
18. p∨ t and t
 19. p∧ t and p

20. p ∧ c and p ∨ c
21. (p ∧ q) ∧ r and p ∧ (q ∧ r)

22. p ∧ (q ∨ r) and (p ∧ q) ∨ (p ∧ r)
23. (p ∧ q) ∨ r and p ∧ (q ∨ r)
24. (p ∨ q) ∨ (p ∧ r) and (p ∨ q) ∧ r

Use De Morgan’s laws to write negations for the statements in 25–31.
25. Hal is a math major and Hal’s sister is a computer science major.
26. Sam is an orange belt and Kate is a red belt.
27. The connector is loose or the machine is unplugged.
28. The units digit of 467 is 4 or it is 6.
29. This computer program has a logical error in the first ten lines or it is being run with an incomplete data set.
30. The dollar is at an all-time high and the stock market is at a record low.
31. The train is late or my watch is fast.

Assume x is a particular real number and use De Morgan’s laws to write negations for the statements in 32–37.

32. −2 < x < 7 33. −10 < x < 2
34. x < 2 or x > 5 35. x ≤ −1 or x > 1
36. 1 > x ≥ −3 37. 0 > x ≥ −7

In 38 and 39, imagine that num_orders and num_instock are par- ticular values, such as might occur during execution of a com- puter
program. Write negations for the following statements.

38. (num_orders > 100 and num_instock ≤ 500) or

num_instock < 200
39. (num_orders < 50 and num_instock > 300) or (50 ≤ num_orders < 75 and num_instock > 500)

Use truth tables to establish which of the statement forms in 40–43 are tautologies and which are contradictions

40. (p ∧ q) ∨ (∼p ∨ (p ∧ ∼q))
41. (p ∧ ∼q) ∧ (∼p ∨ q)
42. ((∼p ∧ q) ∧ (q ∧ r)) ∧ ∼q
43. (∼p ∨ q) ∨ (p ∧ ∼q)
In 44 and 45, determine whether the statements in (a) and (b) are logically equivalent.

Problem Solving and Reasoning

44. Assume x is a particular real number.

a. x < 2 or it is not the case that 1 < x < 3.
x ≤ 1 or either x < 2 or x ≥ 3

45. a. Bob is a double math and computer science major and Ann is a math major, but Ann is not a double math and
computer science major.

b. It is not the case that both Bob and Ann are dou- ble math and computer science majors, but it is the case that
Ann is a math major and Bob is a double math and computer science major.

46. In Example 2.1.4, the symbol ⊕ was introduced to denote exclusive or, so p ⊕ q ≡ (p ∨ q)∧ ∼(p ∧ q). Hence the truth table for exclusive
or is as follows:

table

◆ . In logic and in standard English, a double negative is equiv- alent to a positive. There is one fairly common English

usage in which a “double positive” is equivalent to a nega- tive. What is it? Can you think of others?

In 48 and 49 below, a logical equivalence is derived from Theo- rem 2.1.1. Supply a reason for each step.

p ∧ ∼q) ∨ (p ∧ q) ≡ p ∧ (∼q ∨ q) by (a)

48. (

≡ p ∧ (q ∨ ∼q) by (b)
≡ p ∧ t by (c)
≡ p by (d)

Therefore, (p ∧ ∼q) ∨ (p ∧ q) ≡ p.

49. (p ∨ ∼q) ∧ (∼p ∨ ∼q)

≡ (∼q ∨ p) ∧ (∼q ∨ ∼p) by

(b)

(c)

≡ ∼q ∨ (p ∧ ∼p) by
≡ ∼q ∨ c by
≡ ∼q by (d)

Therefore, (p ∨ ∼q) ∧ (∼p ∨ ∼q) ≡ ∼q.

Use Theorem 2.1.1 to verify the logical equivalences in 50–54. Supply a reason for each step.
50. (p ∧ ∼q) ∨ p ≡ p 51. p ∧ (∼q ∨ p) ≡ p
52. ∼(p ∨ ∼q) ∨ (∼p ∧ ∼q) ≡ ∼p
53. ∼((∼p ∧ q) ∨ (∼p ∧ ∼q)) ∨ (p ∧ q) ≡ p
54. (p ∧ (∼(∼p ∨ q))) ∨ (p ∧ q) ≡ p

	Logical Form and Logical Equivalence
	Representing Common Form
	Compound Statements
	Solution
	Solution

	Truth Values
	Evaluating the Truth of More General Compound Statements
	Logical Equivalence
	Example 2.1.7 Showing Nonequivalence
	Solution

	Example 2.1.8 Negations of And and Or: De Morgan’s Laws
	Example 2.1.9 Applying De Morgan’s Laws
	Solution

	Example 2.1.10 Inequalities and De Morgan’s Laws
	Example 2.1.11 A Cautionary Example

	Tautologies and Contradictions
	Example 2.1.12 Tautologies and Contradictions
	Example 2.1.13 Logical Equivalence Involving Tautologies and Contradictions

	Summary of Logical Equivalences
	Example 2.1.14 Simplifying Statement Forms

