
Prisoner’s dilemma and Nash Equilibrium 
Alice and Bob were just caught transferring state secrets (darn those bad generators!). 
Now, sadly, they face prison time. Separated into 2 rooms, homeland security tries to get 
them to confess. They are each told (independently) that if they both confess, they will be 
put in prison for 3 years. If one confesses and the other does not, the confessor will be let 
free in exchange for testifying against the other, who will receive 4 years in prison. If they 
both keep quiet they will be let off with a slap on wrist: 1 year each. The outcomes are 
represented in the following table: 
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Def 1.1 We say that a collection of players strategies form a Nash Equilibrium if no 
deviation in any single player’s strategy results in a higher yield for that player. 

Let us look at the prisoner’s dilemma with this definition in mind. It has one 
equlibrium: the case where both players confess. If Alice knows that Bob will confess, then 
she cannot do anything but confess as well: a deviation from the equilibrium can only 
result in a fourth year for her. Of course it is possible that both players will choose not to 
confess from the get go, but this is not an equilibrium. If Alice gets wind of the fact that 
Bob plans to stay quiet, she’ll turn him in! And if bob in turn realizes this, he’ll choose to 
confess as well. So while this can occur, in some sense it is an ”unstable” outcome. 

Let’s turn to another example: the lion and the lamb. Two predators are fighting over 
a piece of meat. If they both chill and play the lamb, they can split it. We’ll say they both 
gain 3 points. If one plays lion while the other plays lamb, he makes out with the meat 
gaining 4 points while his opponent gets the bones (worth 1 point). If they both play lion 
they both lose out and receive no points: 
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This game has 2 equilibrium: (Hawk, Lamb) and (Lamb, Hawk). 
Before we move on, let’s look at one more example called matching pennies. See if you 

can find the equilibrium: 

 Heads Tails 

3 , 3 0 , 4 

4 , 0 1 , 1 

3 , 3 1 , 4 

4 , 1 0 , 0 



Heads 

Tails 

As we see, not all games have a Nash equilibrium. Even when they do, we should 
recognize that this equilibrium does not necessarily predict what will happen. Consider 
the game stop/don’t stop. I ask each of you in succession whether you’d like to stop, or 
continue. If anyone ever says stop, I give them $10. However, if every player says 
continue, then at the end I give every player $11. The strategy profile where everyone 
says continue is an equilibrium. However, if we consider what would happen in real life, 
it is quite likely someone would give up the dollar and stay stop. Especially if there were 
100 students in line to be asked next. So what gives? Why does the theory fail here? Well, 
we simply haven’t evaluated the payoffs correctly. In terms of concrete dollars it is 
correct. But the value of money in the hand is greater than the value of money to come. 
Most people would pay $1 to assure $10. How much this assurance is worth is hard to 
evaluate. In fact, it probably varies from one person to the next. But what if the game were 
played with $2 to the one that stopped and $1000 to everyone if all say continue? Then 
probably very few players would stop. Finding a good way to model real life situations 
can be difficult. But by simplifying problems we can learn a lot about the economics of 
human (and even non-human) interaction, and this is what game theory attempts to do. 

1 Mixed Strategies 
Let’s consider one more game called BoS (originally Bach or Stravinsky). Alice and Bob 
are celebrating their freedom with a movie. Bob wants to go see Batman, but Alice really 
prefers Something About Love (1988). They do agree on one thing: they want to see the 
movie together. They can’t hold hands if they’re in different theaters. Here are their 
payoffs: 

                    B  S 
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We know already that this game has two equilibrium: (B,B) and (S,S). But in fact there 
is another less obvious equilibrium. The two more obvious equilibrium are called ”pure-
strategy” equilibrium, but it is also possible for the players to choose a ”mixed-strategy” 
in which (you guessed it) they will play B with some probability and S with the remaining 
probability. The goal is to find the appropriate probabilities such that neither player will 
choose to strange their strategy. More specifically, let’s define p1(B) and p2(B), to be the 
probabilities that player 1 chooses B and that player 2 chooses B respectively. We want 

1 , −1 −1 , 1 

−1 , 1 1 , −1 

2 , 1 0 , 0 

0 , 0 1 , 2 



to find values of p1(B) such that player 2 becomes indifferent between the choice of B and 
S (we will then do the same for player 
1): 

2 · p1(B) + 0 · p1(S) = 0 · p1(B) + 1 · p1(S) 

⇒ 2 · p1(B) = 1 · (1 − p1(B)) 

 

A similar equation to calculate p2(B) yields . 

2 Dominance 
Sometimes players can rule out certain strategies pretty easily. We call such strategies 
”dominated” strategies, because in any situation it does not pay to play such a strategy. If 
we remove all of these strategies, however, we are left with a different game in which 
some other strategies may in fact be removable. By doing this over and over again, we 
can rule out a lot of strategies. Consider the following game: 

 L R 

U 

M 

D 

We can see that there is no reason for player 1 to play D, because U is always at least as 
good as D. But once player 2 realizes this, he may as well always play R. Now player 1 
concludes that if player 2 plays R, he may play M. So (M,R) is the strategy profile that 
survives iterated deletion of weakly dominant strategies. We call this a rationalizable 
strategy. 

4 , 0 1 , 1 

0 , 0 3 , 1 

1 , 5 1 , 0 
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