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Nim Games 

1 One Pile Nim Games 
Consider the following two-person game. 

• There are initially n stones on the table. 

• During a move a player can remove either one, two, or three stones. 

• If a player cannot move then he loses (this only happens when there 
are 0 stones on the table). 

Notation 1.1 We denote this game (1,2,3)-NIM. 

Before reading on, think about how you should play this game to win 
starting with a pile of, say, 21 stones. 

Strategy: It is clear that if there are only one, two, or three stones left (on 
your turn), you can win the game by taking all of them. If, however, there are 
exactly four stones you will lose, because no matter how many you take, you 
will leave one, two, or three and your opponent will win by taking the 
remainder. If there are five, six, or seven stones you can win by taking just 
enough to leave four stones. If there are eight stones you will again lose, 
because you must leave five, six, or seven. Etc. 

Here is the win/loss information for take one-two-or-three for up to 21 
stones. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
L W W W L W W W L W W W L W W W L W W W L W 

In general, if there are a multiple of four stones you lose. Otherwise you win 
(by taking enough stones to leave a multiple of four for your opponent). So 
we see the pattern LWWW, which is repeated. Thus, 21 stones is a win: take 
one stone. 
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Def 1.2 Let a1,a2,...,ak be k distinct natural numbers (nonzero). Then 
(a1,...,ak)-NIM is the following game. 

• There are initially n stones on the table. 

• During a move a player can remove either a1,a2,a3 or ... ak stones. 

• If a player cannot move then he loses. (This may happen even if there 
are a non-zero number of stones on the table. For example, if the game 
is (2,3)-NIM and there is 1 stone on the table, then the player cannot 
move.) 

1.1 Modular Arithmetic 
In this section we define terminology that will be useful in studying NIM 
games. This section will use modular arithmetic. 

Def 1.3 a mod m is the remainder obtained when a is divided by m. 

For example, 8 mod 3 = 2. 
We are used to working with modular arithmetic in everyday life. For 

example, starting from the beginning of the year we could count the seconds, 
minutes, and hours exactly. In practice, this is too complicated so we take the 
seconds mod 60, the minutes mod 60, and the hours mod 12. (Sometimes we 
take hours mod 24 to distinguish a.m. and p.m.) 

Mathematicians typically work with a slightly different definition of 
modular arithmetic. They say that that two numbers a and b are equivalent 
mod m if a and b differ by a multiple of m. This is written a ≡ b (mod m). 

Consider the first game from the last section. Using the modular 

arithmetic notation, we say that a pile of n stones is a win for the first Player 

if n ≡ 1,2,3 (mod 4) and a loss if n ≡ 0 (mod 4).  

 

 

2 Generalized Take-One-Two-or-Three 
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Consider the following game: 

• Initially the game begins with a pile of n stones. 

• During a turn a player may either remove a1,a2,...,ak stones. We call this 
(a1,...,ak)-nim. 

• The first player who cannot make a move loses. 

Lets look at the game where we only allow one or four stones to be taken. 
In our notation this is the game (1,4)-NIM. Now it helps to think about the 
game more generally. Assume there are s stones left. If s < 4, you can take only 
one stone leaving s − 1 stones. If s − 1 is a loss for your opponent then s is a 
win for you, and if s−1 is a win for your opponent then s is a loss for you. If s 
≥ 4, you can remove one or four leaving either s−4 or s−1 stones. If either s − 
4 or s − 1 is a loss for your opponent, then s is a win for you. Otherwise s − 4 
and s − 1 are both wins for your opponent, so s must be a loss for you. 

We can build a win/loss table by looking for each s at the information for 
s−1 and s−4 stones. Here it is for take one-or-four for up to 21 stones. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
L W L W W L W L W W L W L W W L W L W W L W 

We see that the pattern is LWLWWL. How do we confirm that this pattern 
repeats forever? We can do this by showing that once the pattern WLWWL 
exists it will keep repeating. The table clearly starts WLWWL (for 1 to 5 
stones). After that the win/loss situation for any group of five stones depends 
only on the previous group. So once the pattern WLWWL continues into the 
next group of five stones (6 to 10) it has to repeat forever. 

Theorem 2.1 In the game (1,4)-NIM 

1. If n ≡ 1,3,4 (mod 5) then player I wins. 

2. If n ≡ 0,2 (mod 5) then player II wins. 

Proof: We are proving that the pattern WLWWL always repeats. Assume that 
the pattern holds for up to 5r stones for some natural number r ≥ 1. Imagine 
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that you are player I. This means that 5r − 4 is a win, 5r − 3 is a loss, 5r −2 and 
5r −1 are wins, and 5r is a loss. Then for 5r +1 stones, you either move, to 
5r−3 or to 5r, leaving your opponent in a losing position, so 5r+1 is a win for 
you (player I); for 5r+2 stones both moves, to 5r−2 and to the newly 
discovered 5r + 1, leaves your opponent in a winning position, so it is a loss 
for you (hence a win for player II); for 5r +3 stones taking one stone leaves 
the newly discovered 5r + 2, which is a loss for your opponent, and thus a win 
for you (player I); for 5r + 4 stones taking four stones leaves 5r, which is a 
loss for your opponent, and thus a win for you (player I); and, for 5r + 5 stones 
both moves to 5r + 1 and 5r + 4 leave our opponent in a winning positions, 
so it is a loss for you (hence a win for player I); We thereby reproduce the 
pattern WLWWL.  

Note 2.2 The two sets {0,2} and {1,3,4} have the following properties: 
(1) if n ∈ {1,3,4} (mod 5) then some move will create {0,2} (mod 5), 
(2) if n ∈ {0,2} then all moves will create {1,3,4} (mod 5). 
This kind of structure is common in proofs that certain values lead to 

player I/player II wins in NIM. 

Def 2.3 If there is a pattern that repeats after some initial segment, the game 
is periodic. The length of a minimum repeating pattern is the period. 

Using this notation (1,2,3)-NIM has period 4, and (1,4)-NIM has period 
5. 

Consider the game (2,4,7)-NIM (where you can remove 2, 4, or 7 stones). 
It has the following win/loss table. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
L L W W W W L W W L W W L W W L W W L W W L 

It has an initial segment LLWW. Then the pattern WWL repeats forever, so the 
game is periodic with period 3. 

Theorem 2.4 For any h1,...,hn the games (h1,...,hn)-NIM is periodic. 



5 

Aside Let us consider how many ways we can fill n positions with W and L’s. 
If n = 1 there are only 2 ways to do this (either its a W or an L). For n = 2 there 
are 4 ways to arrange them: WW WL LW and LL. If n = 3, notice that we can 
take each unique pattern from the n = 2 case, and either put a W or and L at 
the end. So if there are 4 ways to arrange them when n = 2, there are 2 · 4 = 8 
ways to arrange them for n = 3. Similarly there are 2 · 8 = 16 ways to arrange 
them for n = 4. In general then, we see there are 2n ways to arrange them 
when there are n positions. 
Proof: Let m be the maximum of the hk. Consider the first m(2m + 1) entries 
in the win/loss table. Group them into 2m+1 groups of m contiguous entries. 
There are only 2m possible patterns for each group. Why? Since there are 2m 

+ 1 groups, by the pigeon hole principle, two groups must be the same. 
Whatever pattern occurs between those two groups must repeat after that 
forever. So the period must be at most m2m.  

3 Easy Two-Pile Nim 
Consider the following NIM-type game: 

• Initially there are two piles of stones. We denote a position (a,b). 

• During a move a player removes as many stones as he wants from one 
of the piles. 

• If a player cannot move then he loses. (This only happens when the 
position is (0,0).) 

Here is an example of a play of the game. 

1. Starting position is (20,14). 

2. Player I removes 6 from pile 1. Position is now (14,14). 

3. Player II removes 4 from pile 1. Position is now (10,14). 

4. Player I removes 4 from pile 2. Position is now (10,10). 
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5. Player II removes 8 from pile 2. Position is now (10,2). 

6. Player I removes 8 from pile 1. Position is now (2,2). 

7. Player II removes 2 from pile 1. Position is now (0,2). 

8. Player I removes 2 from pile 2. Position is now (0,0). 

9. Player II cannot move, so he loses. 
Note that Player I’s strategy was to always even out the piles. We prove 

that this works. Let ONE be the set of ordered pairs where I wins, and let TWO 
be the set of ordered pairs where II wins. 

Theorem 3.1 (a,b) ∈ ONE iff a 6= b. 

Proof: We prove this informally. Notice that if a 6= b, player I can always 
make them equal. Since player II must remove some stones, he must then 
make it such that a 6= b again. So when the game begins with a 6= b on player 
I’s first turn, player I can assure that this remains the case for each successive 
turn. Eventually player II will be forced to remove the last stone from one of 
the piles (because he is required to take some stone), and player I will win. 
On the other hand, if a = b to begin the game, the table is exactly reversed. 
Whatever play I makes, he will have to leave the piles uneven. Suppose after 
player I’s first move it is now a 6= b0. Now we can view player II as player I 
on a new game where a 6= b0, and the proof that he wins is the same as above.
 

4 General Two-pile Nim 
Consider the following game. 

1. Initially there are two piles of stones. We denote a position by (a,b). 

2. During a turn a player can do one of the following. 

• Remove 1,2, or 3 stones from pile 1. 
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• Remove 1,3, or 4 stones from pile 2. 

3. If you cannot move, you lose. (This will only happen if the position is 
(0,0). 

More generally, consider the following game. 

Def 4.1 Let G1 and G2 be 1-pile NIM games. G = G1 ⊕ G2 is defined as follows. 

1. Initially there are two piles of stones. We denote a position by (a,b). 
2. During a turn a player can do one of the following. 

• Remove what is allowed on pile 1 by G1. 

• Remove what is allowed on pile 2 by G2. 

3. If you cannot move, you lose. (This may happen even if the position 
isnot (0,0). For example, if G1 is (2,3)-NIM and G2 is (1,2)-NIM then 
there is no move from position (1,0).) 

Note the following philosophies from the previous games studied. 
In (1,2,3)-NIM you try to make your opponent look at position a where a 

≡ 0 (mod 4), while never looking at such a position yourself. Note that the 
losing position 0 has the property that 0 ≡ 0 (mod 4). Hence you are trying 
to make your opponent look at a position that has a property also shared by 
the losing position, while never looking at a position with that property 
yourself. Since the positions numeric value keeps decreasing, and you never 
look at a position with that property, you must win. 

In two pile-NIM you try to make your opponent look at position (a,b) 
where a = b, while never looking at such a position yourself. Note that the 
losing position (0,0) has the property that a = b. Hence you are trying to make 
your opponent look at a position that has a property also shared by the losing 
position, while never looking at a position with that property yourself. Since 
the positions numeric value keeps decreasing, and you never look at a 
position with that property, you must win. 

So, we need to find some property of the position (0,0) and make sure our 
opponent always sees a position with that property. 
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4.1 Grundy numbers 
Before analyzing two-pile Nim games, we need to analyze 1-pile Nim games 
in more depth. We will assign numbers to all the positions in a one-pile nim 
game. These numbers would not be needed if all we wanted to do was win 
the 1-pile game; however, they are needed if we want to study many-pile 
games. 

Def 4.2 A game is Impartial (or nonpartisan) if from any position exactly the 
same moves are available to both Players. 

All the games of the form (a1,...,ak)-NIM are impartial. Chess is not 
impartial because one Player can only move the white pieces and the other 
Player the black pieces. Similarly, checkers and go are not impartial. 

We will see that we can “solve” all impartial games where the last Player 
to move wins. We give a recursive definition for the Grundy number of a 
position in an impartial game. 

Def 4.3 Let G be a game. The Grundy number of a position P in G is 

- If P is a final position, it has Grundy number 0. (It is a loss for the Player 
whose move it is.) 

- Otherwise the Grundy number is the minimum natural number that is 
not a Grundy number of any position that is attained from making one 
move on P. 

Lemma 4.4 Let G be a 1-pile NIM game and g be the Grundy function of G. Let 
a,a0 be positions in G such that you can get from a to a0 in one move. Then g(a) 
6= g(a0). 

Proof: Assume that from position a you can get to, in one move, the positions 
c1,c2,...,ck. Then g(a) is the least number that is not in the set {g(c1),...,g(ck)}. In 
particular g(a) cannot equal any number in {g(c1),...,g(ck)}. Since a0 is one of the ci, 
g(a) 6= g(a0).  

Example 1: Here are Grundy numbers for (1,2,3)-NIM for up to 21 stones. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 

It is periodic with sequence 0,1,2,3. 
We write the Grundy function as 

 

Example 2: Here are Grundy numbers for (1,3,4)-NIM for up to 21 stones. 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

0 1 0 1 2 3 2 0 1 0 1 2 3 2 0 1 0 1 2 3 2 0 

It is periodic with sequence 0,1,0,1,2,3,2. 
We write the Grundy function as 

 0 if n ≡ 0,2 (mod 7); 
 

1 if n ≡ 1,3  (mod 7); 
 (mod 7); 3 if n ≡ 5 (mod 7). 2 if n ≡ 4,6

Example 3: For example, here are the Grundy numbers for (2,4,7)-NIM up to 
21 stones. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
0 0 1 1 2 2 0 3 1 0 2 1 0 2 1 0 2 1 0 2 1 0 

It is eventually periodic with sequence 1,0,2. Notice that it has an initial 
sequence of length 8, as compared to length 4 when we looked only at 
win/loss information. 

We write this function as 

 0 if n = 0,1,6 or n ≥ 8 ∧ n ≡ 0 (mod 3); 
 1 if n = 2,3 or n ≥ 8 ∧ n ≡ 1 (mod 3); 

g(n) = 
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2 if n = 4,5 or n ≥ 8 ∧ n ≡ 2 (mod 3); 3 if n 

= 7. 

4.2 Using Grundy Numbers for Two-pile NIM Games 
We can now state the philosophy of two-pile NIM games. Let G1 be a 1-pile 
NIM game with Grundy function g1. Let G2 be a 1-pile NIM game with Grundy 
function g2. Let G = G1 ⊕ G2. The position (0,0) has the property that g1(0) = 
g2(0). To win we make our opponent always look at (a,b) with g1(a) = g2(b). 

Theorem 4.5 Let G1 be a 1-pile NIM game with Grundy function g1. Let G2 be 
a 1-pile NIM game with Grundy function g2. Let G = G1 ⊕ G2. Let ONE be the 
initial positions (a,b) from which I wins. Let TWO be the initial positions (a,b) 
from which II wins. Then (a,b) ∈ ONE iff (g1(a) 6= g2(b)). 

Proof: We prove this in a way similar to the way we proved it for simple 2pile 
games. Suppose that to begin the game, g(a) 6= g(b). Player I can move to 
make it so that g(a) = g(b0). This follows trivially from the definition of 
grundy numbers: without loss of generality, suppose g(a) < g(b). By the 
definition of grundy numbers, we know that there is some number of stones 
b0 reachable from position b on pile 2 such that g(b) = g(a). This is because 
for every natural number less than g(b) there is some reachable position 
from b with that grundy number. On the other hand, we notice that if g(a) = 
g(b), there is nothing II can do to keep them equal after his turn. This is 
because all reachable positions from either pile must result in a lower grundy 
number. Eventually II will have to move such that g(b) = 0 and there are no 
more legal moves on that pile. Player I can then assure that g(a) = 0 after each 
of his moves, until there is no legal move on that pile either. Player I then 
wins. To see that player I loses when the game begins with g(a) = g(b) we 
simply reverse the table.  

We end this section where we began- with a particular 2-pile NIM game. 

Example 4.6 Let G1 be (1,2,3)-NIM game with Grundy function g1. Let 
G2 be (1,3,4)-NIM game with Grundy function g2. Let G = G1 ⊕ G2. We 
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 

1 if n ≡ 1,3
 (mod 7); 

2 if n ≡ 4,6 (mod 
7); 3 if n ≡ 5
 (mod 7). 

Hence we have that (a,b) ∈ TWO iff 

• a ≡ 0 (mod 4) and b ≡ 0,2 (mod 7). 

• a ≡ 1 (mod 4) and b ≡ 1,3 (mod 7). 

• a ≡ 2 (mod 4) and b ≡ 4,6 (mod 7). 

• a ≡ 3 (mod 4) and b ≡ 5 (mod 7). 
5 Many Pile Nim Games 
We define many-pile NIM games. 

Def 5.1 Let G1,G2,...,Gk be 1-pile NIM games.  is defined as follows. 

1. Initially there are k piles of stones. We denote a position by (a1,a2,...,ak). 

2. During a turn a player can do one of the following. 

• Remove what is allowed on pile 1 by G1. 

• Remove what is allowed on pile 2 by G2. 

... 
• 

• Remove what is allowed on pile k by Gk. 

3. If you cannot move, you lose. (This may happen even if the positionis 
not (0,0,0,...,0). For example, if G1 is (2,3)-NIM and all the rest are (1,2)-
NIM then from position (1,0,0,...,0) there is no move.) 

know that    

We know that 

0 
1 

g1(n) = 

2 
3 

if n ≡ 0 
if n ≡ 1 
if n ≡ 2 
if n ≡ 3 

(mod 4); 
(mod 4); 
(mod 4); 
(mod 4). 

 0 
 

if n ≡ 0,2 (mod 
7); 
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Aside The numbers we use every day are in base 10 (aka decimal). 
Sometimes its useful to use other bases: we will quickly learn about base 2 
(also called binary). In base 10, the number 357 is actually shorthand for 
3·102+5·101+7·100. Another way of saying this is that there is a ”hundreds” 
place, a ”tens” place and a ”ones” place. Also notice that we use 10 digits (0-
9). In binary, we use powers of 2 rather than powers of 10, and there are only 
2 digits (0 and 1). For example, the number 101 in binary is the same as the 
number 5 in decimal: 1 · 22 + 0 · 21 + 1 · 20 = 5. 

We need the following definition to just state our theorem. 

Def 5.2 Let G1,G2,...,Gk be 1-pile NIM games. . Let (a1,...,ak) be a 
position in G. Write g1(a1), ..., gk(ak) in base 2. Add zeros to the left of the 
numbers so that all the numbers have the same length. Write the numbers 
down in a table. This table is called T(G,a1,...,ak). 
Example 5.3 Let G1 be (1,2,3,4,5)-NIM. Let G2 be (1,3,4)-NIM. Let G3 be 
(2,4,7)-NIM. Let G = G1⊕G2⊕G3. Let g1,g2,g3 be the Grundy functions of 
G1,G2,G3. We write the Grundy Functions of G1,G2, and G3 in both base 10 and 
base 2 of length 5, since that is 
the largest length. The 
Grundy function of G1 is 

if n ≡ 3 (mod 5); if n ≡ 4
 (mod 5). 

The Grundy function of G2 is 

 if n 
≡ 0,2 (mod 7); if 
n ≡ 1,3 (mod 7); if 
n ≡ 4,6 (mod 7); if 
n ≡ 5 (mod 7). 

The Grundy function of G3 is 

0 = (000)2 
1 = 

(001)2 g1(n) =
 2 = (010)2 

if n ≡ 0 
if n ≡ 1 
if n ≡ 2 

(mod 5); 
(mod 5); 
(mod 5); 
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 if n = 0,1,6 or n ≥ 8 ∧ n ≡ 0
 (mod 3); if n = 2,3 or n ≥ 8 ∧ n ≡ 1 (mod 
3); if n = 4,5 or n ≥ 8 ∧ n ≡ 2 (mod 3); 

3 = (011)2 if n = 7. 

Consider the position (24,2,0). The Grundy numbers are (100,010,000). 
We pad out 0’s on the left to make the numbers the same length to obtain 
(00100,00010,00000). Hence T(G,24,2,0) is 

100 
010 
000 

Theorem 5.4 Let G1,...,Gk be 1-pile NIM games. Let g1,...,gk be the associated 
Grundy functions. Let , Let (a1,...,ak) be a position in G. (a1,...,ak) ∈ 
ONE iff some column of T(G,a1,...,ak) has an odd number of 1’s. 

Proof: Again similar to before. Notice that if some column has an odd number 
of 1’s in it, then I can make sure that all columns have an even number of 1’s 
after his move. He simply chooses the pile with the greatest grundy number. 
From that pile, all other smaller grundy numbers are available. He chooses 
the one that evens out the 1’s in each column. Of course player II is now forced 
to make (at least) one column have an odd number: otherwise he wouldn’t 
have taken any sticks (do you see why this is true?). This logic again holds 
until the game ends.  

Example 5.5 We revisit this example from before. Let G1 be (1,2,3,4,5)NIM. 
Let G2 be (1,3,4)-NIM. Let G3 be (2,4,7)-NIM. Let G = G1⊕G2⊕G3. Let g1,g2,g3 

be the Grundy functions of G1,G2,G3. We write the Grundy Functions of G1,G2, 
and G3 in both base 10 and base 2 of length 5, since that is the largest length. 
The Grundy function of G1 is 

0 = (000)2 if n ≡ 0 
if n ≡ 1 
if n ≡ 2 

(mod 5); 
(mod 5); 
(mod 5); 
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1 = 
(001)2 g1(n) =
 2 = (010)2 

  if n 
≡ 3 (mod 5); 

 if n ≡ 1,3 (mod 7); 
if n ≡ 4,6 (mod 7); 

 if n = 0,1,6 or n ≥ 8 ∧ n ≡ 0 (mod 3); if n = 2,3 
or n ≥ 8 ∧ n ≡ 1 (mod 3); if n = 4,5 or n ≥ 8 ∧ n ≡ 2
 (mod 3); 3 = (011)2 if n = 7. 

It is possible to write down a statement like 
(a1,a2,a3) ∈ TWO iff XXX 
however it would be quite complicated involving many cases. We give a 

few examples, both for ONE and TWO. 
1. If a1 ≡ 0 (mod 5), a2 ≡ 4,6 (mod 7) and a3 ≥ 8 and a3 ≡ 2 

(mod 3) then g1(a1) = 0 = (00)2, g2(a2) = 2 = (10)2, and g3(a3) = 2 = 
(10)2. T(G,a1,a2,a3) is 

00 
10 
10 

Notice that every column has an even number of 1’s. Hence (a1,a2,a3) 
∈ 
TWO. 

4 = (100)2 

The Grundy function of G2 is 

if n ≡ 4 (mod 5). 

0 = (000)2 if n ≡ 0,2 (mod 7); 

3 = (011)2 

The Grundy function of G3 is 

if n ≡ 5 (mod 7). 
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2. If a1 ≡ 3 (mod 5), a2 ≡ 1,3 (mod 7) and a3 ≥ 8 and a3 ≡ 1 
(mod 3) then g1(a1) = 3 = (11)2, g2(a2) = 1 = (01)2, and g3(a3) = 2 = 
(01)2. T(G,a1,a2,a3) is 

11 
01 
01 

Notice that the last column has an odd number of 1’s. Hence (a1,a2,a3) ∈ ONE. 

6 Misere Version 
What if the goal to not take the last stone. This is the misere version. 

• There is initially a pile of n stones. 

• Players alternate turns removing 1,2, or 3 stones. 

• The player who makes the last move loses. 

Think about the strategy for misere take one-two-or-three before 
continuing. 

Strategy: It is clear that if there are only one stone left you lose, 
Strategy: It is clear that if there are only one stone left you lose, because 

you must take it. If there are two, three, or four stones left, you will win by 
taking enough stones to leave exactly one. If there are exactly five stones you 
will again lose, because you will have to leave two, three, or four and your 
opponent will take enough to leave one stone. If there are six, seven, or eight 
stones you will win by taking enough to leave five stones. Etc. 

Here is the win/loss information for misere take one-two-or-three for up 
to 21 stones. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 
W L W W W L W W W L W W W L W W W L W W W L 
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In general, if there are a multiple of four stones plus one you lose. Otherwise 
you win by taking enough stones to leave a multiple of four plus one. The 
pattern is WLWW, which is repeated. Using the modular arithmetic notation, 
we say that a pile of n stones is a win for the first Player if n ≡ 0,2,3 (mod 4) 
and a loss if n ≡ 1 (mod 4). In this version, 21 stones is a loss for the first 
Player. 

7 Dynamic Programming 
Consider the following game 

• Initially there are 3 piles of stones. We denote a position by (a,b,c). 

• A player may remove a prime from the first pile, or a square from the 
second pile, or a Fibonacci number from the third pile. 

• If a player cannot move then they lose. 

This is a rather complicated game it is doubtful that it has a succinct 
statement about when player I wins. However, we can still (with a computer 
program) calculate who wins which positions rather easily. The key is that 
we never try to calculate who wins (a1,a2,a3) until we know ALL of the lower 
positions. 

if player I wins when the game starts with (a,b,c); 
 ( ) = 

 II if player II wins when the game starts with (a,b,c). 

Let PR be the set of primes, SQ be the set of squares and FIB be the set of 
Fibonacci numbers. Then the following holds: 

W(0,0,0) = II 

I 
 

W(a,b,c) = 
 

(∃p ∈ PR)[a ≥ p ∧ W(a − p,b,c) = II] OR 
(∃s ∈ SQ)[b ≥ s ∧ W(a,b − s,c) = II] OR 
(∃f ∈ FIB)[c ≥ f ∧ W(a,b,c − f) = II]; 
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 
 II otherwise. 

If by the time we are looking at (a,b,c) we have already computed W of all 
(a0,b0,c0) with a0+b0+c0 < a+b+c then we can carry out this calculation easily. 
In fact, the problem we are really solve here is not “What is W(a,b,c)?’ but 
instead “What is W(a,b,c) for all (a,b,c) with a + b + c ≤ n?” 

Here is psuedocode for the problem. It is not very efficient; however, it 
can be made alot more efficient. 

Input(n). 
W(0,0,0)=II. (This sets W(0,0,O) to the value II.) for i=1 to n for 
a=0 to i for b=0 to i-a c=i-a-b (So now (a+b+c=i) 
W(a,b,c)=II (We will set this to I if we find a good move.) LOOKING = YES 
(We are looking for the good move.) for p=1 to a 
if (p is prime) and (W(a-p,b,c)=II) and (LOOKING=YES) then 
W(a,b,c)=I 
LOOKING = NO If 
LOOKING = YES then for 
s=1 to b 
if (s is square) and (W(a,b-s,c)=II) and (LOOKING=YES) then 
W(a,b,c)=I 
LOOKING = NO If 
LOOKING = YES then for 
f=1 to c 
if (f is a Fibonacci) and (W(a,b,c-f)=II) and (LOOKING=YES) then 
W(a,b,c)=I 
LOOKING = NO 
END 

Even though this is not a nice formula, it is an efficient calculation (or can 
be made into one.) 
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