Solve Linear Systems by Graphing

Goal • Solve systems of linear equations.

Your Notes

VOCABULARY

System of two linear equations

Solution of a system

Consistent

Inconsistent

Independent

Dependent

Example 1

Solve a system graphically

Graph the system and estimate the solution. Then check the solution algebraically.

$$4x + 2y = 4$$
 Equation 1

$$2x - 3y = 10$$
 Equation 2

Solution

Graph both equations. The lines appear to intersect at (,). Check this algebraically as follows:

Equation 1

Equation 2

$$4x + 2y = 4$$

$$4x + 2y = 4$$
 $2x - 3y = 10$
 $4(__) + 2(__) \stackrel{?}{=} 4$ $2(__) - 3(__) \stackrel{?}{=} 10$
 $= 4 \checkmark$ $= 10 \checkmark$

Remember to check the visual solution in both equations.

Your Notes

Checkpoint Graph the linear system and estimate the solution. Then check the solution algebraically.

1.
$$4x + y = -2$$

 $-6x - 3y = 12$

NUMBER OF SOLUTIONS OF A LINEAR SYSTEM

Exactly one solution

Infinitely many solutions

No solutions

Lines intersect at Lines

consistent and

consistent and

Lines are

Solve a system with many solutions Example 2

Solve the system. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

$$-2x + y = 4$$
 Equation 1

$$4x - 2y = -8$$
 Equation 2

The graphs of the equations are . So, each point on the line is a solution, and the system solutions. has Therefore, the system is

Solve the system. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

$$-2x + 4y = 8$$

Equation 1

$$-2x + 4y = -4$$
 Equation 2

Solution

The graphs of the equations are two _____. Therefore,

the system is

Checkpoint Solve the system. Then classify the system as consistent and independent, consistent and dependent, or inconsistent.

2.
$$3x - 2y = -6$$

$$-5x + 4y = 8$$

3.
$$-x - 2y = -5$$

$$-2x - 4y = -10$$

4.
$$6x - 3y = 12$$

$$6x - 3y = -6$$

5.
$$x + y = 2$$

$$4x - 3y = 1$$

Ice Cream Shop At an ice cream shop, one customer pays \$9 for 2 sundaes and 2 milkshakes. A second customer pays \$13 for 2 sundaes and 4 milkshakes. How much do each sundae and milkshake cost?

Verbal model

Graph the equations

The lines appear to intersect at about the point (,).

1 2 3 4 5 6 7 x Cost per sundae

Check this algebraically.

The solution is (,). So, each sundae costs \$_ and each milkshake costs \$.

Checkpoint Complete the following exercise.

Homework

6. In Example 4, how much do each sundae and milkshake cost if the first customer pays \$7 and the second customer pays \$10?

