Applied Algebra	Name	
Final Exam	Period	Date

Part A: Vocabulary - Use a word from the box to complete each sentence. (1 point each)

Decagon	Acute	Rhombus	Angle	Isosceles
Octagon	Rectangle	Parallel	Trapezoid	
Scalene				
Circle	Ray	Diameter	Line segment	$180^{\rm o}$
Dodecagon	Protractor	Line	Obtuse	$90^{\rm o}$
Compass	Acute	Pentagon	Perpendicular	$60^{\rm o}$
Octagon	Right	Equilateral	Altitude	$360^{\rm o}$
Ruler	Radius	Parallelogram	Diagonal	3.14159

agon	Right	Equilateral	Altitude	360°
er	Radius	Parallelogram	Diagonal	3.14159
. The tool	used to measure angle	es in degrees is called a(n)		•
. A		is formed by joining all t	he points that are a	given distance fro
a central	point.			
. A triangle	e with all sides of une	qual measure is called a(n)	triangle.
. A(n)		is the part of a line that	has two endpoints.	
. If two lin	es meet to form a righ	at angle, then the two lines	are	·
. A(n)		is a parallelogram wi	th all angles equal in	n measure.
. The tool	used to construct circl	es is called a(n)	·	
. A polygo	n with ten sides is cal	led a(n)	·	
. The sum	of the measures of the	e interior angles of a triang	gle equals	·
0. An angle	whose measure is gre	eater than 90° is called a(r	n)	angle.
1. A triangle	e with all sides of equ	al measure is called a(n) _		triangle.
2. The segm	ent connecting the ce	nter of a circle with a poin	nt on the circle is cal	lled a(n)
	·			
3. A polygo	n with five sides is ca	lled a(n)	·	
4. If two lin	es lie on the same flat	surface and do not cross,	no matter how far the	hey are extended
then the t	wo lines are	·		
5. A quadril	ateral with all sides e	qual in length is called a(r	n)	·
6. A		is formed when two lines	s (or parts of lines) r	neet.
7. A(n)		is a quadrilateral v	with exactly one pair	of parallel sides

Part B: Using A Calculator - Use your calculator to find the answers to the following: (1point each)

5.
$$68 \times \pi$$

6.
$$2374 \times 56 \times 173$$

7.
$$53,576 \div \pi$$

9.
$$(29 + 24 - 49) \times 7$$

10.
$$(56 + 74 + 23 + 49) \div 16$$

17.
$$(35.754 + 8.46 + 9.4) \times 4.75$$

18.
$$\frac{3}{20} + \frac{7}{15}$$

19.
$$\frac{9}{17} \times \frac{486}{57}$$

20.
$$\frac{1}{2}(18+24) \times 12$$

21. Maria wants to multiply 15 times π , but her calculator does not have a button marked π . If she enters 15×3.14 on her calculator, will her answer be too high or too low? (Write your answer below).

Part C: Estimating Answers - (1 point each)

Round the following decimal numbers to the nearest tenth (one decimal place):

1. 10.674

2. 5.81

3. 56.098

1. _____

2. _____ 3. ____

4. 0.4715

5. 11.99

6. 4.345

4. _____

5. _____

6. _____

Round the following decimal numbers to the nearest hundredth (two decimal places):

7. 904.846

8. 0.1042

9. 0.2827

7. _____

8.

9.

10. 33.456

11. 8.928

12. 16.1287

10. _____

11. _____

12. _____

Round the following decimal numbers to the nearest thousandth (three decimal places):

13. 3.0191

14. 0.7893

15. 7.3926

13. _____

14. _____

13. 26.9037

14. 4.67349

15. 88.34451

15. _____ 16. ____

17. _____

18. _____

19. _____

19. The weight capacity of a certain elevator is posted as 1,000 pounds.

Out of the following, which would probably be a safe load? (estimate)

- **a.** 12 young children
- **b.** 8 adults
- **c.** 7 college students
- **d.** 10 high school students

Applied Algebra Final Exam

Name

Part D: Geometric Constructions - (2 points each)

Use a ruler and protractor to draw and label each figure described below:

- 1. \overline{AB} with a length of 10 cm
- 2. $\angle ABC$ with a measure of 130°

Use a compass and straight edge to construct and label each figure described below:

Duplicate $\angle B$.

Bisect $\angle A$.

5. Construct the perpendicular bisector of sAB.

6. Construct segment SEF with $EF = \frac{1}{2} (AB + CD)$.

C ______D

E ←

Part E: Geometry: Perimeter (2 points each)

Compute the perimeter (or circumference) for each of the figures in Problems 7-14:

1. Perimeter = _____

2. Perimeter = _____

3. Perimeter = _____

4. Perimeter = _____

5. Perimeter = _____

6. Circumference = _____

7. Perimeter = _____

8. Perimeter = _____

3" 3" 4" 5" 6"

Part F: Geometry: Area

Complete the area formula for each figure by selecting from the answers on the right: (1 point each)

_____ **1.** parallelogram: A = _____× height

A. radius

______ **2.** square: $A = (\underline{\hspace{1cm}})^2$

B. length

_____ **3.** circle: $A = \pi \times (\underline{\hspace{1cm}})^2$

C. ½

_____ **4.** trapezoid: $A = \underline{\hspace{1cm}} \times (b_1 + b_2) \times h$

D. side

_____ **5.** rectangle: A = _____ × width

E. height

_____ **6.** triangle: $A = \frac{1}{2} \times base \times$ _____

F. base

Compute the area for each of the figures in Problems 7-16 (2 points each)

7. Area =

8. Area = _____

Applied Algebra Final Exam

Name _____

Part F: Geometry: Area , continued

11. Area = _____

16. Area of shaded ring = _____

Applied Algebra Final Exam

Part G: Computer Lab - (10 points)

- 1. Microsoft Excel Make a bar graph for the following data, and answer the questions that follow. Your finished paper should contain:
 - a heading with your name, class and date
 - the appropriate type of graph with a title and accurate data
 - answers to questions relevant to that graph

Average Monthly Earnings (Adults 18 and over)

Level of Education	Average Monthly Earnings
No high school diploma	\$856
High school diploma only	1357
Vocational degree	1568
Associate degree	1879
Bachelor's Degree	2489
Master's degree	3211
Doctorate degree	4545
Professional degree (e.g. medicine)	5554

- a) On the average, how much **more** *per year* would a person with only a high school diploma earn than a person who did not have a high school diploma?
- b) *Over a lifetime*, how much more money could a person expect to earn with a high school diploma than without a high school diploma?
- 2. Geometer's Sketchpad Make a Sketchpad drawing of all of the following figures. Your finished paper should contain:
 - a heading with your name, class and date
 - all appropriate labels and/or measurements
 - a) What are the similarities and differences between a segment, ray and line? Show labeled examples of each **and** provide a written explanation.
 - b) Construct a circle with a radius of 1. 5 inches. Label and measure the following:
 - the radius
 - the diameter
 - c) Construct a trapezoid and measure each side of the trapezoid. Construct and measure the altitude (the segment with a length equal to the trapezoid's height).
 Calculate the area of the trapezoid by using the appropriate area formula. Then measure the area using the program's measure menu.